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Deviations from Ideal Behavior
The ideal gas law does not accurately represent the behavior of real gases. Formulation of more realistic
equations of state for gases and exploring the implications of these equations is important. If measurements
of pressure (p), molar volume (V), and temperature (T) of a gas do not confirm the relation pV = RT, within
the precision of the measurements, the gas is said to deviate from ideality or to exhibit nonideal behavior.
To display the deviations clearly, the ratio of the observed molar volume V to the ideal molar volume V;4.4;
(note that V;4.q; = RT/p) is plotted as a function of p at constant T. This ratio,

L, A 7
Videw RT/p RT B
is called the compressibility factor. The compressibility factor, Z = 1 for a system of an ideal gas, since V' =

Vigear, and is independent of p and T. For real gases Z = Z(T, p), a function of both temperature and

pressure.
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For hydrogen, Z is greater than unity (the ideal value) at all pressures. For nitrogen, Z is less than unity in the
lower part of the pressure range, but is greater than unity at very high pressures. Note that for those gases
that are easily liquefied, Z dips sharply below the ideal line in the low-pressure region.

How can the ideal gas law be modified to yield an equation that will represent the experimental data more
accurately?
We begin by correcting an obvious defect in the ideal gas law, namely the prediction that under any finite
pressure the volume of the gas is zero at the absolute zero of temperature: V = RT/p. On cooling, real gases
liguefy and ultimately solidify. After liquefaction the volume does not change very much. We can arrange the
new equation so that it predicts a finite, positive volume for the gas at 0 K by adding a positive constant b to
the ideal volume

V =b+ (RT/p)
~ The molar volume at 0 K is b, and we expect that b will be roughly comparable with the molar volume of
the liquid or solid. The last equation also predicts that as the pressure becomes infinite the molar volume
approaches the limiting value b. This prediction is more in accord with experience than the prediction of the
ideal gas law that the molar volume approaches zero at very high pressures. Since by definition Z = pV /RT,
multiplying the equation V = b + (RT/p) by p/RT gives

pvV _bp bp
—=—+127Z=1+—
RT RT + + RT
The equation
bp
Z=1+—
RT
requires Z to be a linear function of p with a positive slope b/RT. The equation
bp
Z=1+—
RT

cannot possibly fit the curve for nitrogen, which starts from the origin with a negative slope. But it can
represent the behavior of hydrogen. From the equation Z =1+ (bp/RT) we can conclude that the
assumption that the molecules of a gas have finite size is sufficient to explain values of Z greater than unity.
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Apparently, this size effect is the dominating one in producing deviations from ideality in hydrogen at 0°C. It
is also clear that some other effect must produce the deviations from ideality in gases such as nitrogen and
methane, since the size effect cannot explain their behavior in the low p range. We must search the other
effect.
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We have already noted that the worst offenders in the matter of having values of Z less than unity are CH,
and CO,, which are easily liquefied. Thus, we begin to suspect a connection between ease of liquefaction and
Z, and to ask why a gas liquefies. First of all, energy, the heat of vaporization, must be supplied to take a
molecule out of the liquid and put it into the vapor. This energy is required because of the forces of attraction
acting between the molecule and its neighbors in the liquid. The force of attraction is strong if the molecules
are close together, as they are in a liquid, and very weak if the molecules are far apart, as they are in a gas.
The problem is to find an appropriate way of modifying the gas equation to take account of the effect of
these weak attractive forces. The pressure exerted by a gas on the walls of a container acts in an outward
direction. Attractive forces between the molecules tend to pull them together, thus diminishing the outward
thrust against the wall and reducing the pressure below that exerted by the ideal gas. This reduction in
pressure should be proportional to the force of attraction between the molecules of the gas.

\

Ly |
J

Consider two small volume elements v; and v, in a container of gas. Suppose that each volume element
contains one molecule. The attractive force between the two volume elements is some small value f. If
another molecule is added to v, , keeping one molecule in v;, the force acting between the two elements
should be 2f. Addition of a third molecule to v, should increase the force to 3f, and so on. The force of
attraction between the two volume elements is proportional to the concentration (c;) of molecules in v,. If
at any point in the argument, the number of molecules in v, is kept constant and molecules are added to v,
then the force should double and triple, etc.
-~ The force acting between the two elements can be written as: force « c;c,.
Since the gas is homogeneous, concentration in a gas is everywhere the same, so that, c; = ¢, = ¢, and
therefore,

force o< c?
But,c =n/V = 1/V, force «< 1/V?2.

~ The equation, V = b + (RT/p) can be alternatively written as,
RT
Py -»
Because of the attractive forces between the molecules, the pressure is less than that given by the above
equation by an amount proportional to 1/V?, so a term is subtracted from the RHS of the above equation to
yield,
RT a
P=7=b 72
where a is a positive constant roughly proportional to the energy of vaporization of the liquid. Two things
should be noted about the introduction of the term a/V ?:

* Forces acting on any volume element in the interior of the gas balance out to zero; only those
elements of volume near the wall of the container experience an unbalanced force that tends to pull
them toward the center. Thus, the effect of the attractive forces is felt only at the walls of the vessel.

* The derivation assumed an effective range of action of the attractive forces of the order of
centimeters; in fact, the range of these forces is of the order of nanometers.

The last equation is known as the van der Waals equation for a mole of a real gas.
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We have seen that thé van der Waals equation for a mole of a real gas is given by,
RT a

p —_—
V—-b V2
where a is a positive constant roughly proportional to the energy of vaporization of the liquid. Thus, the van

der Waals equation for a mole of a real gas may be written in the form,
aN -
(p+§9(V—b)=RT

The same equation for n moles will be,

n2a
<p + ) (V —nb) = nRT,

where V = nV has been used. The van der Waals equation takes two effects into account. First, the effect of

molecular size,
RT
P=7 b
Since the denominator in the above equation is smaller than the denominator in the ideal gas equation, the
size effect by itself increases the pressure above the ideal value. According to this equation it is the empty
space between the molecules, the “free” volume, that follows the ideal gas law. Second, the effect of
intermolecular forces is taken into account,
RT a

Py = 72

The effect of attractive forces by itself reduces the pressure below the ideal value and is taken into account

by subtracting a term from the pressure. Multiplying the van der Waals equation,

by V/RT, we get,

7= ___ 2
=T " w/V) RTV

At low pressures, b/V is small compared with unity.
2

: L __ 1 =1+x+x*+ —1+b+<b) +
Ty 1-x YT AN
Thus,
b (b\* a a1 (b\* [b\?
Z=1+:+(:> +rm—== (b——)—'l'(:) +<:> + -
Vv \r RTV RT/V \V 1%

which expresses Z as a function of T and V. It would be preferable to have Z as a function of T and p, since
all the experimental plots are Z versus p graphs. Thus,

Google Meet Link: https://meet.google.com/vpf-xufp-ykj



MI-1T / 23/11/2023 REAL GASES SECTION B: PHYSICAL CHEMISTRY-1

Z=14 (b )2 e (D) 4 (2) -
RT/V \V %4
has to be expressed as a function of T and p, and to achieve this we perform a “trick”. At low pressures we
can expand Z as a power series in the pressure.

Z=1+4Ap+ A p* + Azp3 + -
in which the coefficients 4;, A, A3, ...are functions of T only. That is,

Z =1+ A,(Dp + Az (T)p? + As(T)p® + -

To determine these coefficients, we use the definition of Z in

pV
7 =—
RT
to write
1 p
_ V RTZ
Using this value of 1/V in
=14 (o) e (B 4 (2) +
B RT/V \V 1%
we get,
2.2 3.3
ay p b\"p b\ p
2=1+ (- )z * (ar) 72+ ()
+( RT)RTZ+ RT Zz+ RT Z3+

Therefore, we have two expressions for Z, namely,
Z =1+ A (T)p + A (T)p* + A3 (T)p> + -

and,
2

2 3
a\y p b\"p b\ p
Z=1+ (b= o) ot (o) S+ (mr) o5t
( RT) RTZ \RT) Z2 RT) Z3
Comparing the right-hand sides of the two equations, we get,

2.2 3.3
a\ p b\“p b\ p
1+ A (T)p + Ay (T)p? + As(T)p® + - =1 + (b - —RT) =t (—RT) =+ (—RT> o+
We subtract 1 from each side of this equation, to get
2.2 3.3
a\ p b\“p b\ p
A(T ATZAT?’---=b———(—>—(—)—---
1(Dp + A (Dp? + A5 (Dp* + = (b~ o) m+ (o) 72+ (57) 75+

and divide the result by p to obtain,

AL (T) + Ay (T)p + A5(T)p? + (b a)1+(b)2p+(b)3p+
1 2P T AsLP RT/Z T \RT) 72 3
Whenp = 0, Z = 1, and in this limit,
a
A(T) = — (b - ﬁ)
which is the required value of A{(T). We will repeatedly use the equation in red to determine the other

coefficients. Therefore, we have,
1 ay1 b\*p b \> p?
D)+ A+ A8 p- YL (LY 2y (L)
1)+ A (Dp + A3(Dp? + -+ = (b= =) - + (o) 7z + () 75+
andatp = 0, Z = 1, and in this limit,

a
M) = (b -,
Substituting the above value of A;(T) in the equatlon written in red, we obtain,
5 b\*p b \> p?
A;(T) + Ay (T)p + A3 (T)p? + - = Al(T) + (RT) L+ (ﬁ) e

We repeat the procedure by subtracting A, (T) from both 5|des of this equation
2

T + A 4= (5= 1) )+ () Do (L) 2
or, Ay (T)p + Az (T)p? + - = (1ZZ)A1(T)+(RZ’T)2%+(;LT) §z+

Dividing throughout by p, we get
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or, Ay(T) + A3 (T)p + -+ = —(Z%)Alm ; (;;T)Z%Jr(b )3 Py

7 RT) 73
From,
=14 (o) b (B 4 (2) 4
B RT/V \V 1%
From,
21+ (-2 (2) +(3) 4
a RT/V \V v ’
we have,

Under the limit of low p, pV = RT, so that,

Z—1_(b a)1+l7<b)2+l7(b>3+ (b a)l—A(T)
p RT/RT ' RT\V) " RT\V - RT/RT ~ 1
Therefore, from

nay+asmp = - (EHAD (YL ()R

2 WP =", )77 rRT) 72 " \RT) 73
we have,

Ay (T) + As(T)p + -+ = —A TAl(T)+(b)21+<b)3p+

2 s+ =4 —7 rRT) 72 " \RT) 7°

Whenp — 0, Z —» 1, we have,
2 2 1 a 12 a

AZ(T)=(%) —[Al(T)]Zz(RiT) _[ﬁ(b—ﬁ)] :W(Zb_z%)

Thus, we have,

1 a a a
AI(T) = ﬁ(b - ﬁ) and AZ(T) = W(Zb - ﬁ)
Hence,
Z=1+A,(Dp + A,(T)p? + A;(T)p3 + -
may now be presented as,
1 a a ay ,
Z=1+p= (b RT)p + Ry (2b RT)p 4.
which is the desired form of Z = Z(p, T).
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We have seen,
1 a a a
Z=1+—=(b—=)p+—=(2b—==)p* + -
RT ( RT) P T RT) ( RT) p

which is the desired form of Z = Z(p, T). The terms responsible for nonideal behavior vanish

* notonlyasthep = 0,

e butalso,asthe T — oo.
Thus, as a general rule, real gases are more nearly ideal when the pressure is lower and the temperature is

higher. The slope of the Z versus p curve is obtained by differentiating the above equation with respect to p,
keeping T constant.

0z 1 a 2a a
(%)T = == (b - =) +W(2b — )P+

Atp = 0, all of the higher terms drop out and this derivative reduces simply to

0z 1 a
(55). =mr (b =) P =0

where the derivative is the initial slope of the Z versus p curve. If b > a/RT, the initial slope is positive. The
size effect dominates the behavior of the gas. If b < a/RT, the initial slope is negative. The effect of the
attractive forces dominates the behavior of the gas. Thus, the van der Waals equation, which includes both
the effects of size and of the intermolecular forces, can interpret either positive or negative slopes of the Z
versus p curve. Thus, the effect of the attractive forces dominates the behavior of CH, and CO,, while the
molecular size effect dominates the behavior of H,. We now focus our attention on the Z versus p curves for
a single gas at different temperatures.
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Thus,atp =0,
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0Z 1
(%)Tzﬁ(b_R;‘T) at p=0

if the temperature is low enough, the term a/RT will be larger than b and so the initial slope of Z versus p
will be negative. As the temperature increases, a/RT becomes smaller and smaller; if the temperature is

high enough, a/RT becomes less than b, and the initial slope of the Z versus p curve becomes positive.
3-

200 K

| | |
0 300 600 900
platm
Finally, if the temperature is extremely high, the slope of Z versus p must approach zero. At some
intermediate temperature Ty, the Boyle temperature, the initial slope must be zero. The condition for this is
given by,
(b . ) 05T, = —
—— =0Ty = —.
RTj B~ Rb
At Ty the Z versus p curve is tangent to the curve for the ideal gas at p = 0 and rises above the ideal gas
curve only very slowly.

The Real Gas p — V Isotherms
If the p — V relations for a real gas are measured at various temperatures (T; < T, < T, < T3 < T,), a set
of isotherms are obtained.

* At high temperatures the isotherms look much like those of an ideal gas.

* At low temperatures the curves have quite a different appearance.

* The horizontal portion of the low-temperature curves is particularly striking.
Consider a container of gas in a state described by point A. Imagine one wall of the container to be movable
(a piston). Keeping the temperature at T;, we slowly push in this wall thus decreasing the volume. As the IV
becomes smaller, p rises slowly along the curve until the volume V, is reached. Reduction of V' beyond V/,
produces no change in pressure until V5 is reached. The small reduction in V from V5 to V, produces a large
increase in pressure from p, to p’. This is a rather remarkable sequence of events, particularly the decrease
in volume over a wide range in which p remains at the constant value p,. If we look into the container while
all this is going on, we observe that at V, the first drops of liquid appear. As the volume goes from V, to V5
more and more liquid forms. The constant pressure p, is the equilibrium vapor pressure of the liquid at the
temperature T;. At V5 the last trace of gas disappears. Further reduction in volume simply compresses the
liquid. The pressure rises very steeply, since the liquid is almost incompressible.
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The Real Gas p — V Isotherms lD
If the p — V relations for a real gas are measured at various temperatures (T; < T, < T, < T3 < T,), a set
of isotherms are obtained.

* At high temperatures the isotherms look much like those of an ideal gas.

* Atlow temperatures the curves have quite a different appearance.

* The horizontal portion of the low-temperature curves is particularly striking.
Consider a container of gas in a state described by point A. Imagine one wall of the container to be movable
(a piston). Keeping the temperature at Ty, we slowly push in this wall thus decreasing the volume. As the V
becomes smaller, p rises slowly along the curve until the volume V, is reached. Reduction of V beyond V/,
produces no change in pressure until V5 is reached. The small reduction in V from V5 to V, produces a large
increase in pressure from p, to p'. This is a rather remarkable sequence of events, particularly the decrease
in volume over a wide range in which p remains at the constant value p,. If we look into the container while
all this is going on, we observe that at V, the first drops of liquid appear. As the volume goes from V, to V5
more and more liquid forms. The constant pressure p, is the equilibrium vapor pressure of the liquid at the
temperature T;. At V5 the last trace of gas disappears. Further reduction in volume simply compresses the
liquid. The pressure rises very steeply, since the liquid is almost incompressible.

V3—U>+ Ay APV- ATV U

The steep lines at the left of the diagram are therefore isotherms of the liquid. At a somewhat higher
temperature the behavior is qualitatively the same, but the range of volume over which condensation occurs
is smaller and the vapor pressure is larger. In going to still higher temperatures, the plateau finally shrinks to
a point at a temperature T,, the critical temperature. As the temperature is increased above T, the isotherms
approach more and more closely those of the ideal gas. No plateau appears above T,. The endpoints of the
plateaus are connected with a dashed line.
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Just as in any p — V diagram every point represents a state of the system. Such as 4, on the extreme left of
the diagram represents a liquid state of the substance. A point, such as C, on the right side of the diagram
represents a gaseous state of the substance. Points under the “dome” formed by the dashed line represent
states of the system in which liquid and vapor coexist in equilibrium. It is always possible to make a sharp
distinction between states of the system in which one phase is present and states in which two phases coexist
in equilibrium, that is, between those points on and under the “dome” and those outside the “dome”. A
phase is a region of uniformity in a system. This means a region of uniform chemical composition and uniform
physical properties. Thus, a system containing liquid and vapor has two regions of uniformity. In the vapor
phase, the density is uniform throughout. In the liquid phase, the density is uniform throughout, but has a
value different from that in the vapor phase. However, it should be noted that there is no dividing line
between the liquid states and the gaseous states. The fact that it is not always possible to distinguish between
a liquid and a gas is the principle of continuity of states. The points A and C lie on the same isotherm, T;.
Point C clearly represents a gaseous state, and point A clearly represents the liquid obtained by compressing
the gas isothermally. Suppose that we begin at C and increase the T of the gas, keeping the V constant. The
pressure rises along the line CD. Having arrived at point D, the p is kept constant and the gas is cooled. This
decreases the V along the line DE. Having arrived at point E, the V is again kept constant and the gas is
cooled. This decreases the p until the point 4 is reached. At no time in this series of changes did the state
point pass through the two-phase region. Condensation in the usual sense of the term did not occur. Point A
could reasonably be said to represent a highly compressed gaseous state of the substance. The statement
that point A clearly represented a liquid state must be modified. The distinction between liquid and gas is
not always clear at all. As this demonstration shows, these two states of matter can be transformed into one
another continuously. Whether we refer to states in the region of point A as liquid states or as highly
compressed gaseous states depends purely upon which viewpoint happens to be convenient at the moment.
If the state point of the system lies under the dome, the liquid and gas can be distinguished, since both are
present in equilibrium and there is a surface of discontinuity separating them. In the absence of this surface
of discontinuity there is no fundamental way of distinguishing between liquid and gas.
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The p — V Isotherms of a van der Waals Gas
Consider the van der Waals equation in the form

When ¥ is very large this equation approximates the ideal gas law, since V is very large compared with b and
a/V? is very small compared with the first term. This is true at all temperatures. At high temperatures, the
term a/V? can be ignored, since it is small compared with RT/(V — b).

|

|

|

I

':

Vv v

V—

A plot of the isotherms, p versus V/, calculated from the van der Waals equation is shown. It is apparent from

the figure that in the high-volume region the isotherms look much like the isotherms for the ideal gas, as

does the isotherm at high temperature T5. At lower temperatures and smaller volumes, none of the terms in

the equation may be neglected. At the temperature T, the isotherm develops a point of inflection, point E.

At still lower temperatures, the isotherms exhibit a maximum and a minimum. The curve at T, predicts three

values of the volume, V', V", and V'", at the pressure p,. The corresponding plateau in the experimental

isotherm predicts infinitely many volumes of the system at the pressure p,.

(p+ —) (7 —b) = RT = pV — pb+; ;lz RT
5 pV3 —pbV2 + aV —ab = RTV?
0r,pl73 —(pb+RT)V?+aV —ab=0

Thus, van der Waals equation is cubic in . It is worthwhile to realize that even if a very complicated function

had been written down, it would not exhibit a plateau such as that in the experimental isotherm. The

oscillation of the van der Waals equation in this region is as much as can be expected of a simple continuous

function. The sections AB and DC of the van der Waals curve at T, can be realized experimentally. If the

volume of a gas at temperature T, is gradually reduced, the pressure rises along the isotherm until the point
2
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D, at pressure p, is reached. At this point, condensation should occur, however, it may happen that liquid
does not form, so that further reduction in volume produces an increase in pressure along the line DC. In
this region (DC) the pressure of the gas exceeds the equilibrium vapor pressure of the liquid, p, at the
temperature T,. These points are therefore state points of a supersaturated (or supercooled) vapor. Similarly,
if the volume of a liquid at temperature T, is increased, the pressure falls until point A, at pressure p, is
reached. At this point vapor should form; however, it may happen that vapor does not form, so that further
increase in the volume produces a reduction of pressure along the line AB. Along the line AB the liquid exists
under pressures that correspond to equilibrium vapor pressures of the liquid at temperatures below T,. The
liquid is at T, and so these points are state points of a superheated liquid. The states of the superheated
liquid and those of the supercooled vapor are metastable states. They are unstable in the sense that slight
disturbances are sufficient to cause the system to revert spontaneously into the stable state with the two
phases present in equilibrium. The section BC of the van der Waals isotherm cannot be realized
experimentally. In this region the slope of the p — V curve is positive, increasing the volume of such a system
would increase the pressure, and decreasing the volume would decrease the pressure! States in the region
BC are unstable; slight disturbances of a system in such states as B to C would produce either explosion or
collapse of the system. Although it is, in practice, impossible to carry out a process along the entire S-shaped
isotherm, this curve has some theoretical significance. Maxwell showed by a thermodynamic argument that
the line AD must intersect the curve ABCD in such a way that,

fpdV =0,

otherwise, it would be possible, conceptually, to produce an overall work in a cyclic isothermal process, in
violation of the second law of thermodynamics.

The Critical State
We have already seen that the van der Waals equation can be written as,
pV3 —(pb + RT)V? +aV —ab =0,
so that,
s RT\_, a_ ab
vV —(b +—>V +-V-——=0,
p p p
and since it is a cubic equation, it may have three real roots for certain values of p and T. These three roots

for T, and p,, are the intersections of the horizontal line at p, with the isotherm at T,. All three roots lie on
the boundary of or within the two-phase region. The two-phase region narrows and finally closes at the top.
This means that there is a certain maximum pressure p. and a certain maximum temperature T,, at which
liguid and vapor can coexist. This condition of temperature and pressure is the critical point and the
corresponding volume is the critical volume V... As the two-phase region narrows, the three roots of the van
der Waals equation approach one another, since they must lie on the boundary or in the region. At the critical
point the three roots are all equal to V.. The cubic equation can be written in terms of its roots V', V"', and
V///:
V=vHWw-v"Hw-v"=o.
At the critical point, V' = V" =V'"" =V, so that the equation becomes (VV — V)3 = 0. Expanding, we
obtain,
V3 — 3720, + 3772 — V3 = 0.

At the critical temperature and pressure (p = p., T = T,), van der Waals equation takes the form

_ RT,\ - a_ ab

V3 —(b+—>V2 +—V-—=0

Dc Pc Pc

The last two equations (in red) are simply different ways of writing the same equations. Thus, the coefficients

of the individual powers of ¥ must be the same in both equations.

_ RT, _ a ab
3W,=b+—, 302=—, V3P =—
_ Pc Pc Pc
The set of equations can be solved for V., p. and T, the critical constants of the gas.
_ a 8a
V. = 3b, =——, T, =——
¢ Pe=27b2" "¢~ 27Rb

Google Meet Link: https://meet.google.com/vpf-xufp-ykj



MI-1T / 04/12/2023 REAL GASES SECTION B: PHYSICAL CHEMISTRY-1

If the values of a and b are known, the above expressions may be used to calculate V., p. and T.. Alternatively,
one might use the equations,

_ RT, __, a _, ab
3V.=b+ , W =—, VP =—
_ Pc Pc Pc
to calculate a, b and R, in terms of V, p. and T:
Ve _ 8p:Ve
b=—=, a=3pV?* R=—+
3 a PcVe 3T,

However, the value of R so obtained does not agree well at all with the known value of R. There is an
alternative way to calculate the critical constants. At any T, along the linear segment the p remains constant

as the V changes.
0
v )y

The critical point is the limiting case of a linear segment.

0
(—’f) ~0
aV T=TC

Below T,, the slope of each isotherm goes through the sequence negative-zero-negative. The slope also goes
through a discontinuity at both boundaries of the two-phase region. As T, is approached, the isotherms
become smoother, less discontinuous in slope, until the critical isotherm itself, which is perfectly smooth.
Clearly, the slope, (dp/dV)r, thereby goes through a maximum at the critical point. But a necessary
condition for a maximum in (dp/dV)y is that its derivative vanish, that is,

aZ
(&),..~"
T=T,

Thus, at the critical point, T =T, p = p.,V =V,

0 0?
57, =0 (5%) -0
oV/r-r, ovz) _.

c
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There is an alternative way to calculate the critical constants. At any T, along the linear segment the p
remains constant as the I/ changes.
dp
A (—_) = O
aV/r

The critical point is the limiting case of a linear segment.

d
oo (—ZZ) =0
aV T=TC

Below T,, the slope of each isotherm goes through the sequence negative-zero-negative. The slope also goes
through a discontinuity at both boundaries of the two-phase region. As T, is approached, the isotherms
become smoother, less discontinuous in slope, until the critical isotherm itself, which is perfectly smooth.
Clearly, the slope, (dp/dV)r, thereby goes through a maximum at the critical point. But a necessary
condition for a maximum in (dp/dV) is that its derivative vanish, that is,

aZ
(&),
T=T,

Thus, at the critical point, T =T, p = p.,V =V,

d 0%
57, =0 (5%) -0
oV/r-r, ovz) _.

c
From van der Waals equation,

_ RT a
P=y_p 77
(ap) _ RT N 2a
vl {V-b)2 V¥
and
9%p B 2RT 6a
ovz). — (V-b)3 V*
At the critical point, T =T, p = p.,V =V,

_ RT, N 2a 0= 2RT, 6a
) N (A ) E A
Thus, the two equations,

RT, 2a 2a RT,
0:—_—-'—_—3’ Or’_—3=_—
=b)2 I v (V. —b)?
and
2RT, 6a 6a 2RT,
O = —— _—4 Or,_—4 = =
(z—-b)2 V; vt (. -b)?
will together lead to,
2a V4 RT, (V. —b)3 _
== X—=-= X V= 3b
V3" 6a (L—b)? 2RI, o Ye
and,
2a RT, 2a RT, 8a

—_—= == = = >T = ——
V2 (.—b)2 27b3 (3b—Db)? ¢ 27Rb
Together with the van der Waals equation at the critical point, we have,
RT, a a
== —=2p, =——
pC I/C _ b ‘/(:2 pC 27b2
From van der Waals equation, ¥, p. and T,, the critical constants of the gas were found:

_ a 8a
Ve=3b pe =575 Te =57,

Alternatively, one can calculate a, b and R, in terms of VC, pcand T,:
V. _ 8pcVe
b=—=, a=3pV? R=
3’ 47 oPck 3T,
Using these values, the critical ratio, RT,/p, V., may be calculated to be
RT,./p. V. =8/3 =2.67
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Note that, for an ideal gas, this ratio is unity. The average experimental value of the critical ratio is 3.75.
~ There is a considerable improvement:
Ideal gas (1.00) — van der Waals gas (2.67) — Experimental value (3.75)

Reduced form of the van der Waals equation: The law of corresponding states
The van der Waals equation of state for a mole of gas is,

_ RT a
P=7_p 72
Substituting the values of a, b and R, from
Ve _ 8pc Ve
== =3 2 R=
3 &= 3PV 3T,
we get,
8pcV; 1 3pc V2

TR A S

We divide the above equation throughout by p. and rearrange slightly to get
p 8 T 1 3
—==X—=—X-—== _——
pe 3 T. (V/V)—-(Q/3) VZ/V?

We define a set of new (dimensionless) variables as:

p p |4 T
mT=—; = =; T =—
Pc e T,
With these variables, we can rewrite the last equation as,
8 1 3
T3 -1/3 ¢2
B 8 1 3
or,n—31¢_1/3 2
3
(n 4 F) (Bp—1) = 8c

This equation is known as the van der Waals reduced equation of state. The variables m, ¢, and 7 are known
as the reduced pressure, reduced volume and reduced temperature, respectively. They are collectively
termed as the reduced variables. The important thing about the above equation is that it does not contain
any constants that are peculiar to the individual gas.

~ It should be capable of describing all gases.

The loss of generality that appeared with the van der Waals equation, compared with the ideal gas equation,
is regained. Thus, in terms of the reduced variables, there exists a universally valid approximation to the
equation of state for all substances. This statement is known as the law of corresponding states.

~ Two gases at the same reduced temperature and under the same reduced pressure are in corresponding
states.

By the law of corresponding states, they should both occupy the same reduced volume. For example, argon
at 302 K and under 16 atm pressure, and ethane at 381 K and under 18 atm are in corresponding states,
sinceeachhast=2andm =1/3.
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Surface Energy and Surface Tension
In the fall a fisherman’s boat is often surrounded by fallen leaves that are lying on the water. The boat floats,
because it is partially immersed in the water and the resulting buoyant force balances its weight. The leaves,
however, float for a different reason. They are not immersed in the water, so the weight of a leaf is not
balanced by a buoyant force. Instead, the force balancing a leaf’s weight arises because of the surface tension
of the water. Surface tension is a property that allows the surface of a liquid to behave somewhat as a
trampoline does. When a person stands on a trampoline, the trampoline stretches downward a bit and, in so
doing, exerts an upward elastic force on the person. This upward force balances the person’s weight. The
surface of the water behaves in a similar way. In the figure below, for instance, you can see the indentations
in the water surface made by the feet of an insect known as a water strider, because it can stride or walk on
the surface just as a person can walk on a trampoline.

The molecular basis for surface tension can be understood by considering the attractive forces that molecules
in a liquid exert on one another.
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Part (a) shows a molecule within the bulk liquid, so that it is surrounded on all sides by other molecules. The
surrounding molecules attract the central molecule equally in all directions, leading to a zero net force. In
contrast, part (b) shows a molecule in the surface. Since there are no molecules of the liquid above the
surface, this molecule experiences a net attractive force pointing toward the liquid interior. This net attractive
force causes the liquid surface to contract toward the interior until repulsive collisional forces from the other
molecules halt the contraction at the point when the surface area is a minimum. If the liquid is not acted
upon by external forces, a liquid sample forms a sphere, which has the minimum surface area for a given
volume. Nearly spherical drops of water are a familiar sight, for example, when the external forces are
negligible. The energy of a surface molecule is therefore higher than that of a molecule in the interior of the
solid and energy must be expended to move a molecule from the interior to the surface of a solid. This is also
true of liquids. Suppose that a film of liquid is stretched on a wire frame having a movable member.

Liquid film ~|dX)=
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To increase the area of the film by dA, a proportionate amount of work must be done. The Gibbs energy of
the film increases by ydA, where y is the surface Gibbs energy per unit area. The Gibbs energy increase
implies that the motion of the wire is opposed by a force f. If the wire moves a distance dx, the work
expended is fdx. These two energy increments are equal, so that
fdx =ydA
If [ is the length of the movable member, the increase in area is 2(ldx). The factor 2 appears because the
film has two sides. Thus,
fdx =yQRDdx
so that,
f=2ly.
The length of the film in contact with the wire is [ on each side, or a total length is 21. The force acting per
unit length of the wire in contact with the film is the surface tension of the liquid, f/21l = y. The surface
tension acts as a force that opposes the increase in area of the liquid. The Sl unit for surface tension is the
N - m™?1, which is numerically equal to the rate of increase of the surface Gibbs energy with area, in ] - m™2.
The magnitude of the surface tension of common liquids is of the order of tens of mN - m~1. Hence, the
surface tension of a liquid is defined as the tangential force, in dynes, that acts along the surface of the
liquid at right angles to a line of 1 cm length on the surface.

Measurement of Surface Tension

The surface tension of a pure liquid/solution can be measured either by using the drop-weight or the capillary
rise method. Here we implement the drop-weight (equivalent to the drop-counting) method to determine
the surface tension of the supplied solution or liquid. The principle of the drop-weight method is based on
the fact that when a liquid is allowed to flow through a capillary tube (thus ensuring almost streamline flow)
and fall in drops from its end, the drop first remains sticking at the end of the capillary tube, but it falls down
when its weight becomes just equal to the force of surface tension, acting on it.

The weight w of a drop of liquid of density p and volume v is given by

w = vpg.
If the radius of the drop be r, and if y be the surface tension acting on it, then the
force due to surface tension is 2rry, where 2mr is the circumference of the liquid
drop. If there are n drops in a finite volume V, then the volume of a single drop,

— A v = V /n. Therefore, under the condition of equilibrium
N 2nry = @
W, If two different liquids of densities p4 and pg and surface tensions y, and yz are
I allowed to flow in equal volumes V through the same stalagmometer, and if ny,
and ng be the number of drops that make up for the volume V, then we must
have

Capillary ubePS://meet.google.com/vpf-xufp-ykj
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Thus, if the surface tension and the density of one of the liquids be known, n4 and ng can be experimentally
found out, the density be determined and the unknown surface tension can be evaluated. Generally, water

is used as the reference liquid and the last equation modifies to
Vx Px  MHyo

)

YH,0 B PH,0 MNx
where X stands for the unknown liquid. The surface tension obtained in accordance of the aforesaid method
is the relative surface tension, and not the absolute surface tension, since it is determined relative to the
surface tension of the reference liquid.
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Temperature Dependence of Surface Tension

The surface tension of a pure liquid/solution almost invariably decreases with an increase in the temperature.
R. von E6tvos (1886) proposed a relationship between molar surface energy and T. Say, v be the specific
volume (volume per unit mass, that is, the reciprocal of density), of a liquid and M be its molecular weight.
~ Mv = the molar volume of the liquid. If this (molar) volume is assumed to be spherical, which is the stable
form (since for a given volume of a liquid, a sphere has the least surface area, and hence the lowest value if
surface energy/surface tension), then,

Mv =—=nr

where, 7 is the radius of the corresponding sphere.
a1 o (My)t/3
The surface area of this sphere (which will be the molar surface area) will be proportional to (Mv)?2/3.
A product of the molar surface area, (Mv)2/3, and the surface tension, y, will be the molar surface energy,
since y can also be expressed as energy per unit area.
= The molar surface energy = y(Mv)?/3.
E6tvos proposed that the molar surface energy varies as a linear function of temperature in the Celsius scale
®),
y(Mv)?/3 = aq — kt
In the equation,
y(Mv)?/3 = aq — kt
a and k are constants. Note that, at the critical temperature, t, the surface of a liquid vanishes (y = 0), and
the law of corresponding states holds true.
~Att=t.,y=0,sothat,0 =a — kt., or,a = kt,.
Hence, EGtvOs equation takes the form,
y(Mv)?/3 = kt, — kt = k(t, —t)
Ramsay and Shields studied E6tvos equation further and showed that the surface of a liquid vanishes about
6°C ahead of the critical temperature, and based on this fact, corrected the E6tvos equation to write,
y(Mv)?/? = k(t. — 6 —t)
The above equation (often called the E6tvés-Ramsay-Shields equation) depicts the variation of y with
temperature. The constant k may be determined from the slope of y(Mv)2/3 versus t plot, and k is called
the temperature coefficient of the molar surface energy.

VISCOSITY OF FLUIDS (GASES AND FLUIDS)

Fluid flow through pipes is of immense importance to chemical engineers, who must design appropriate
methods for transporting chemicals to and from reaction vessels. Viscosity is a transport property. Transport
properties are molecular properties of a substance that indicate the rate at which specific (per unit volume)
momentum, heat, or mass are transferred. Science of the study of these processes is called transport
phenomenon. Viscosity of fluids is the key physical property that dictates the design of pipelines to transport
material. Thus, an understanding of fluid and gas viscosity is essential for engineering a chemical process.
Gas viscosity experiments validate the kinetic theory of gases and provide access to microscopic information
from macroscopic measurements. The viscosity of a gas provides a means for determining molecular
diameters, as viscosity arises from collisions among molecules.

In order to measure fluid viscosities, laminar/streamline flow is assumed in the capillary. Laminar flow
implies that the fluid flows in "layers" such that each layer moves at a velocity infinitesimally different than
the layers adjacent to it.

|
~ wdl -
Since the wall is stationary, the layer along the wall has a velocity of zero. The fluid flows more quickly the
further away it is from the stationary wall. Laminar flow is commonly experienced in smooth streams and
rivers, where water flows slowly along the banks and rapidly in the centre.
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The concept of viscosity is usually met in problems of fluid flow, treated by hydrodynamics, as a measure of
the fractional resistance that a fluid in motion offers to an applied shearing force. If a fluid is flowing past a
stationary plane surface, the layer of fluid adjacent to the plane boundary is stagnant; successive layers have
increasingly higher velocities. The frictional force, F, resisting the relative motion of any two adjacent layers,
is proportional to the area of interface, S between them and to the velocity gradient, dv/dr between them.
This is known as the Newton's law of viscous flow. Thus,

dv dv

The proportionality constant 1 is known as the coefficient of viscosity, and is the quantity of interest. Thus
1 may be defined as the force per unit area required to move a layer of fluid with a velocity difference of 1
cm per second past another parallel layer 1 cm away. It is evident that the dimensions of 7 is
mass X length™ X time™?. The S| unit of 5 is kg- m™! - sec™?, and the CGS unit is gm - cm™! - sec™ or
poise (denoted by P), and is equal to one-tenth the S| unit.
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VISCOSITY OF FLUIDS (GASES AND FLUIDS) [Continued from the previous class]

p (M) b ——n, | R
—_— 1

The theory of the process was first worked out by J. L. Poiseuille in 1844. Consider a fluid flowing through a
tube of circular cross-section with radius R and length L. The fluid layer in the closest proximity of the walls
is assumed to be stagnant, and the rate of flow increases to a maximum at the centre of the tube. Let v be
the linear velocity at any distance r from the axis of the tube. A cylinder of fluid of radius r experiences a
viscous drag given by Eq.(1) as

dv
E = N 2nrlL (2)

For a steady flow, this force must be exactly balanced by the force driving the fluid in this cylinder through
the tube. Since the pressure is the force per unit area, the driving force is

Fg= nr?(Py — P;) 3)
where P; and P, are fore and back pressures, respectively. Therefore, for steady flow, F. = F,, that is

dv
—n— - 2nrL = nr?(P; — P,)

dr
so that,
r
dUZ—M(Pl—PZ)dT (4’)
On integration of Eq.(4) we get
(P, — Py)r? . .
vV=— T + constant of integration (5)

According our hypothesis, v = 0, when r = R; this boundary condition determines the integration constant,

so that
(PL—P,)
v=—"—""(R?—-1? 6
G ©
The total volume of fluid flowing through the tube per second dV /dt is calculated by integrating the fluid
velocity v over each element of cross-sectional area 2mrdr.

area = 27rdr

Thus,

av R (P, — P,)R*

— = | 2nrvdr = ——— 7
dt —fo 8nL 7

This is Poiseuille's equation which applies to incompressible fluids undergoing laminar flow. Poiseuille’s

equation may be satisfactorily applied to liquids but not to gases, as volume is a strong function of pressure

for gases.

(a) For Liquids
Under a constant pressure head P = P; — P,, V volume of a liquid is allowed to flow through a fine capillary
tube of known radius R. The length L and the time t for the flow are noted. The equation would thus be
mPR*t

8LV

(8
3

7’]:
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Using the Ostwald viscometer one can measure the relative viscosity of a liquid, relative to the
g viscosity (known) of another liquid, referred to as the reference liquid. Therefore,
L 4 Nx mPxR*ty/8LV Pxty hgpxty
NMH,0  TPu,0R*tn,0/8LV  Py,otn,0 hgpu,otu,o
Upon cancellation, we have

t
Nx  Pxlx )

MH,0 PH,0tH,0
e If Ny, o is known, a measurement of the densities and times of flow of the two would yield 1, the
) coefficient viscosity of the unknown liquid.
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Practice Questions on Real Gases (Set-1)

1.

2.
3.
4

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

What will be the real gas equation if the pressure is extremely high?
Comment on the statement: “Higher the critical temperature of a gas easier is to liquefy it.”
What is meant by the term “excluded volume”? Explain its significance.
The highest allowed pressure of a 20-litre flask containing 1.6 kg of oxygen is 150 atm. To what temperature can it
be heated? Assume that oxygen obeys van der Waals equation with a and b values 1.36 litre? - atm - mol™2 and
31.83 cm?® - mol ™%, respectively.
Draw the Andrews’ curves for a real gas depicting the point of critical temperature T,. Discuss the principle of
continuity of states from the plots. How is the nature of PV isotherm for van der Waals gas? Does it show any
region which can never be experienced experimentally?
The compressibility factor of a real gas obeys the equation Z = a; + a,P + asP2. The Z versus P plot shows a
minimum at some pressure P, and temperature T;. Find the value of a,, the signs of a, and a3, and an expression
for P, in terms of a,, a, and a;. If the temperature variation of a, is given by a, = C; + (C,/T), and the Boyle
temperature T obeys Tz > Ty, remark on the signs of C; and C, and express Ty in terms of C; and C,.
What is meant by compressibility factor? State, without derivation, its value for a van der Waals gas at its critical
point.
Derive the reduced equation of state for a van der Waals gas assuming the expressions for the critical constants.
What is Maxwell’s equal area construction? Why is it necessary?
A gas obeys the equation P(V — b) = RT. Calculate the compressibility factor and (dZ/dP) at constant T of the
gas at 300 K and 10 atm pressure. Given, b = 0.0266 lit - mol~1.
Explain the physical significance of van der Waals constant a and b. What are Sl the units and dimensions of van
der Waals constants a and b?
If the compressibility factor, Z of a gas is expressed as, Z = a, + a4 P, what can you predict about the magnitude
of a, and the signs of o, for different values of P?
Will the pressure of a gas on the walls be greater or less than the ideal pressure if we take into account only the
finite dimension of the molecules?
Comment on the statement: Higher the critical temperature of a gas easier is to liquefy it.
Comment on the statement: Rise in compressibility factor with increasing pressure for a van der Waals gas is due
toaorb.
Draw a set of P — V isotherms below the critical temperature obtained experimentally and for a van der Waals gas.
Explain the curves.
For a given number of moles of gas, show that the van der Waals equation predicts greater deviation from ideal
behaviour (a) at high pressure rather than low pressure at a given temperature, and (b) at low temperature rather
than high temperature at a given pressure.
Justify or criticize the statement: A gas can be liquefied at T = T, and P < P,.
Express the constants a and b in terms of critical constants P, V- and T, of a van der Waals gas.
Find out the critical constants in terms of a and f§ and the critical compressibility factor of a gas that obeys the
equation of state
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Calculate critical compressibility factor (Z;) for van der Waals gas. From the value of Z;, how can you predict
which gas behaves more like a van der Waals gas?
Write down the major limitations of van der Waals equation of state?
What is meant by reduced equation of state? Deduce the reduced equation of state for a van der Waals gas. In the
reduced equation of state, are the parameters characteristic of the gas completely removed or just hidden? Explain
whether such an equation is possible for an ideal gas.
Show that the excluded volume b is approximately four times the actual volume occupied by the molecules in one
mole of a van der Waals gas.
What is Boyle temperature? A gas obeys the equation of state, P(V — nb) = RT. Is it possible to liquefy the gas?
Justify your answer. Show that the gas does not have the Boyle temperature.
Do you think that the van der Waals constant b depends on temperature? Explain.
“The critical temperature must always be less than the Boyle temperature”. Comment on the statement.
Two separate bulbs are filled with an ideal gas A and a non-ideal gas B respectively in such a way that PV remains
same. B is below its Boyle temperature. Which gas has greater temperature? Give reasons.
What do you mean by internal pressure? Assuming a fluid obeying van der Waals equation of state derive the
expression for internal pressure.
Show that at the corresponding states two van der Waals gases must have the same compressibility factors.



